Математика (Бастауыш 1 сынып | 3, 4 тоқсан)

Мазмұны

3-ТОҚСАН БОЙЫНША ЖИЫНТЫҚ БАҒАЛАУҒА АРНАЛҒАН ТАПСЫРМАЛАР
3А «Сандармен амалдар орындау. Есептер» бөлімі бойынша жиынтық бағалау
3В «Шамалар.Уақытты бағдарлау» бөлімі бойынша жиынтық бағалау
3С «Теңдік және теңсіздік. Теңдеу» бөлімі бойынша жиынтық бағалау
3-тоқсан бойынша жиынтық бағалаудың спецификациясы

4-ТОҚСАН БОЙЫНША ЖИЫНТЫҚ БАҒАЛАУҒА АРНАЛҒАН ТАПСЫРМАЛАР
4А «Күнделікті өмірдегі есептеулер» бөлімі бойынша жиынтық бағалау
4В «Жиын және логика элементтері» бөлімі бойынша жиынтық бағалау
4С «Нысандардың орналасуы және бағыты» бөлімі бойынша жиынтық бағалау
4-тоқсан бойынша жиынтық бағалаудың спецификациясы
Жиынтық бағалау (ТЖБ, БЖБ) (СОЧ, СОР)
Толық

Математикадағы жеті түсті гүл ойыны

Сабақтың мақсаты: Балаларға тапсырмалар арқылы алған білімдерін бекіту, логикалық ойлауларын және зейіндерін дамыту.
Есеп шығару,7-ге дейінгі сандық және реттік санау дағдыларын жетілдіру, апта атауларын атау, геометриялық пішіндерді ажыратып, өз бетінше жұмыс жасау дағдысын дамытып, сөздік қорын молайту. Ұқыптылыққа, әдептілікке тәрбиелеу.
Қажетті көрнекі құралдар: Жеті түсті желекті гүл, алма ағашы, сандар, жеті қабатты үй, геометриялық пішіндер.
Әдіс-тәсілдер: сұрақ-жауап, әңгімелесу, көрнекілік.....
Балабақша сабақ жоспары
Толық

Вычисление отсчетов Теоремы Котельникова

ВВЕДЕНИЕ
К важнейшим достижениям человеческой цивилизации в XX столетии относится создание предпосылки становления в XXI веке Информационного общества. Одной из ключевых фигур в этом процессе является выдающийся отечественный ученый акад. В. А. Котельников, который живет, говоря словами другого выдающегося ученого – акад. А. Н. Колмогорова, "всегда руководствуясь тезисом, что истина – благо, что наш долг – ее находить и отстаивать".
Одним из фундаментальных результатов теории связи является доказанная В. А. Котельниковым в 1933 г. теорема отсчетов, согласно которой сообщение, представляющее собой функцию с ограниченным спектром, может быть однозначно представлено своими значениями, взятыми через равные промежутки времени. Опубликованная в Трудах конференции, эта теорема была через 15 лет вновь открыта К. Шенноном. Важнейшей операцией над аналоговым сообщением, которое должно быть передано по цифровым системам связи, является его представление своими отсчетами. Цифровые системы связи в конце XX столетия пришли на смену аналоговым и приобрели, в силу своих огромных преимуществ, глобальный характер. Современное оборудование различного назначения (устройства связи, измерительная техника и т. п.), в котором осуществляется обработка и преобразование сигналов, в настоящее время является цифровым и содержит узлы, осуществляющие взятие отсчетов сигналов, поступающих на вход соответствующих устройств. Связь в широком смысле представляет собой передачу различного вида сообщений из одного или нескольких пунктов в другой или в ряд других пунктов. Сообщения содержат некоторые сведения (информацию), которые для разных получателей могут представлять различную ценность в зависимости от их смыслового содержания. Средств связи является только передача сообщений в определенное место, поскольку оценка смыслового содержания полученных сообщений - дело самого получателя......
Курсовая работа (бесплатно)
Толық

Изучение функций и их графиков на элективном курсе по алгебре в 9 классе

В соответствии с концепцией модернизации образования на период до 2010 г. на старшей ступени общеобразовательной школы предусматривается введение профильного обучения; создание системы специализированной подготовки (профильного обучения) в старших классах общеобразовательной школы, ориентированной на индивидуализацию обучения и социализацию обучающихся, в том числе с учетом реальных потребностей рынка труда, отработки гибкой системы профилей и кооперации старшей ступени школы с учреждениями начального, среднего и высшего профессионального образования.
Процесс реализации профильного обучения определяется следующими основными целями:
• обеспечить углубленное изучение отдельных предметов программы полного общего образования;
• создать условия для существенной дифференциации содержания обучения старшеклассников с широкими и гибкими возможностями построения школьниками индивидуальных образовательных программ;
• способствовать установлению равного доступа к полноценному образованию разным категориям обучающихся в соответствии с их способностями, индивидуальными склонностями и потребностями;
• расширить возможности социализации учащихся, обеспечить преемственность между общим и профессиональным образованием, более эффективно подготовить выпускников школы к освоению программ высшего профессионального образования;
• создать условия для обучения старшеклассников в соответствии с их профессиональными интересами и намерениями в отношении продолжения образования.
Осуществление осознанного выбора профиля обучения учащимися должно обеспечиваться специально организованной предпрофильной подготовкой в девятых классах основной школы. Целью предпрофильной подготовки является создание образовательного пространства, способствующего самоопределению учащихся девятых классов, обоснованному выбору ими дальнейшего пути обучения.
Существенным моментом в организации предпрофильного и профильного обучения является разработка и реализация элективных курсов. Элективные курсы (курсы по выбору, обязательные для посещения учащимися) являются важнейшим средством построения индивидуальных образовательных программ, так как в наибольшей степени связаны с выбором каждым школьником содержания образования в зависимости от его интересов, способностей, последующих жизненных планов. Поскольку создание элективных курсов - важнейшая часть обеспечения введения профильного обучения, то в связи с этим возникает проблема разработки элективных курсов, удовлетворяющих определенным требованиям. ....
Дипломная работа (бесплатно)
Толық

Поперечники связанные с решениями нелинейного уравнения Штурма-Лиувилля

Дипломная работа посвящена изучению вопросов о существовании решений нелинейного уравнения Штурма-Лиувилля в ограниченной области.
Актуальность исследования краевых задач для нелинейного уравнения Штурма-Лиувилля в ограниченной области определяется как потребностями практики в связи с важностью ее приложения к решению разнообразных проблем и задач физики, химии, биологии, радиофизики и электротехники, таки развитием самой теории.
Важное место в теории уравнений с частными производными занимают уравнения второго порядка, возникающие преимущественно в ходе решения физических задач. Одна из задач самых богатых последствиями в ХУIII веке - это задача о колебании струны, исследование которой связано с именами Г.Галилея, М.Мерсенна, Р.Декарта, Х.Гюйгенса, Б.Тейлора, Ж.-Л.Даламбера, Л.Эйлера, Д.Бернулли, Ж.Л.Лагранжа, П.-С.Лапласа.
Исследование по теории линейных дифференциальных уравнений связано с именами Ж.Штурма и М.В.Остроградского, который одновременно с Ж.Лиувиллем (1838) получил важную формулу:

Работы Ж.Штурма и Ж.Лиувилля положили начало исследованиям по теории краевой задачи, носящей их имена и состоящей в решении уравнения

при заданных значениях некоторой линейной комбинации у(х) и в двух точках оси х. Решение этой краевой задачи теснейшим образом связано с теорией интегральных уравнений, а также с теорией разложения функций по фундаментальным функциям.
Систематизация отдельных результатов и построение общей теории гиперболических уравнений началась с работ Ж.Б.Фурье, О.-Л.Коши, С.В.Ковалевской, Г.Дарбу, Э.Гурса, Б.Римана, П.-Г.-Л.Дирихле, Ж.Адамара и др.
Эти классические работы в значительной степени способствовали появлению дальнейших исследований в области гиперболических уравнений. Гиперболические уравнения и системы второго порядка, как линейные, так и нелинейные, были подробно исследованы в работах Р.Куранта, К.Фридрихса, Г.Левитана, И.Шаудера, С.Л.Соболева, И.Г.Петровского, Ж.Лере, Л.Гординга, О.А.Ладыженской, Т.Ш.Кальменова, А.Д.Мышкиса и др. Уравнениям и системам гиперболического типа первого порядка посвящены работы О.А. Олейник, Б .Л.Рожденственской, Н.Н.Яненко и др.
Применение разнообразного математического аппарата к исследованию краевых задач для нелинейного уравнения Штурма-Лиувилля в ограниченной области позволило разработать методы их решения и выделить специальные классы разрешимых задач. К настоящему времени получены важные результаты по различным методам решения краевых задач для нелинейного уравнения Штурма-Лиувилля в ограниченной области, накоплен большой опыт, позволяющий судить о достоинствах и применимости тех или иных методов.....
Дипломная работа (бесплатно)
Толық

Линейные уравнения второго порядка функция Грина

На отрезке [a,b] рассматривается линейная двухточечная краевая задача
(d^2 y)/(dt^2 )+q_1 (t) dy/dt+q_2 (t)y=f(t) (1.1.1)
y(a)=y^0, y(b)=y^1, (1.1.2)
где q_1 (t),q_2 (t),f(t) непрерывны на отрезке [a,b].y^0,y^1- заданные числа.
Целью являются: а) выяснение необходимых и достойных условий однозначной разрешимости задачи (1.1.1), (1.1.2); б) построение функции Грина; в) нахождение решений.
Решением задачи (1.1.1),(1.1.2) будет непрерывная, дважды дифференцируемая функция удовлетворяющая уравнению (1.1.1) и краевым условиям (1.1.2).
В дальнейшем будет показано, что для интегрирования неоднородного линейного уравнения (1.1.1) достаточно найти общее решение соответствующего однородного уравнения
(d^2 y)/(dt^2 )+q_1 (t) dy/dt+q_2 (t)y=0 (1.1.3)
Начнем с общей теории линейных уравнений второго порядка с изучения однородных линейных уравнений (1.1.3).
Мы должны найти вещественные решения уравнения (1.1.3). Как мы знаем, для решения этой задачи иногда оказывается выгодно сначала найти некоторые комплексные решения.
Прежде чем дать понятие о комплексном решении уравнения (1.1.3) дадим определение комплексной функции вещественной переменной
Функцию
z(t)=u(t)+iu(t),
где u(t) и ϑ(t) - вещественные функции от вещественной переменной t,a i=√(-1) будем называть комплексной функцией от вещественной переменной t. Функции u(t) и ϑ(t) называются вещественной и мнимой частями комплексной функции z(t). Примером такой функции является:
e^it=cost+isint,
Или функция общего вида e^αt,где α=a+ib, причем a и b – вещественные:
e^αt=e^(a+it)t=e^at∙ e^ibt=e^at (cosbt+isinbt)=e^at cosbt+〖ie〗^at sinbt....
Дипломная работа (бесплатно)
Толық

Однородные и неоднородные линейные уравнения второго порядка функция Грина

На [a,b] рассматривается линейная двухточечная краевая задача
(d^2 y)/(dt^2 )+q_1 (t) dy/dt+q_2 (t)y=f(t) (1.1)
y(a)=y^0, y(b)=y^1, (1.2)
где q_1 (t),q_2 (t),f(t) непрерывны на [a,b].y^0,y^1- заданные числа.
Целью работы являются: а)выяснение необходимых и достойных условий однозначной разрешимости задачи (1.1), (1.2); б)построение функции Грина; в)нахождение решений.
Решением задачи (1.1),(1.2) будет непрерывная, дважды дифференцируемая функция удовлетворяющая уравнению (1.1) и краевым условиям (1.2).
В дальнейшем будет показано, что для интегрирования неоднородного линейного уравнения (1.1) достаточно уметь найти общее решение соответствующего однородного уравнения
(d^2 y)/(dt^2 )+q_1 (t) dy/dt+q_2 (t)y=0 (1.3)
Начнем изложение общей теории линейных уравнений второго порядка с изучения однородных линейных уравнений (1.3).

§1.Однородное линейное уравнение второго порядка
Мы должны найти все вещественные решения уравнения (1.3). Как известно, для решения этой задачи иногда оказывается выгодно сначала найти некоторые комплексные решения.
Прежде чем дать понятие о комплексном решении уравнения (1.3) дадим определение комплексной функции вещественной переменной.
Функцию
z(t)=u(t)+iu(t),
где u(t) и ϑ(t) - вещественные функции от вещественной переменной t,a i=√(-1) будем называть комплексной функцией от вещественной переменной t. Функции u(t) и ϑ(t) называются соответственно вещественной и мнимой частями комплексной функции z(t). Примером такой функции является
e^it=cost+isint,
Или функция более общего вида e^αt,где α=a+ib, причем a и b – вещественные:
e^αt=e^(a+it)t=e^at∙ e^ibt=e^at (cosbt+isinbt)=e^at cosbt+〖ie〗^at sinbt
Производная n-го порядка от функции z(t) по вещественной переменной t определяется так:
z^((n) ) (t)=u^((n) ) (t)+〖iϑ〗^((n) ) (t)
Дадим теперь понятие о комплексном решении уравнения (1.3). Комплексная функция от вещественной переменной t
y(t) 〖=y〗_1 (t)+〖iy〗_2 (t) (1.4)
называется комплексным решением однородного линейного уравнения (1.3), если подстановка ее в уравнение (1.3) обращает это уравнение в тождество, т.е. если
d^2/〖dt〗^2 (y_1 (t)+〖iy〗_2 (t))+q_1 (t) d/dt (y_2 (t)+〖iy〗_2 (t))+q_2 (t)(y_1 (t)+〖iy〗_2 (t))≡0 (1.5)
Покажем, что всякое решение уравнения (1.3) порождает два вещественных решения этого уравнения, а именно: если комплексная функция y(t) является решением уравнения (1.3), то ее вещественная и мнимая части являются вещественными решениями этого уравнения.....
Дипломная работа (бесплатно)
Толық