Функцияның нүктедегі үзіліссіздігі

Анықтама-1. Егер f(x)=f(x0) (1) шарты орындалса, f(x) функциясы x0 нүктесінде үзіліссіз деп аталады. Бұның мағынасы:
1. f функциясының х0 нүктемінде анықталғандығы қажет.
2. f функциясы белгілі бір >0 саны үшін (x0- x0+ ), (x0- x0), (x0, x0+ ) жиындарының бірінде анықталуы қажет.
3. х нүктесі х0-ге сол жағынан да ақырсыз жақындағанда f(x) f(x0)-ге ақырсыз жақындау керек.
х-х0=һ=∆x сандары функцияның аргументінің х0 нүктесіндегі өсімшесі деп, ал оған сәйкес: ∆y=f(x)-f(x0)=f(x0+h)-f(x0)=f(x0+∆x)-f(x0) саны функцияның өсімшесі деп аталады.
«Өсімше» терминін қолданып, үзіліссіздіктің анықтамасын былай айтуға болады:
Анықтама-2. Егер тәуелсіз айнымалының х0 нүктесіндегі өсімшесі нольге ұмтылғанда оған сәйкес f функциясының өсімшесі нольге ұмтылса, онда f функциясы х0 нүктемінде үзіліссіз деп аталады.
Шектің анықтамасын тікелей қолдансақ, онда үзіліссіздіктің келесі екі анықтамасына келеміз.
Анықтама-3. (үзіліссіздіктің “ ” тіліндегі анықтамасы). Егер кез-келген саны бойынша саны табылып, х-тің теңсіздігін қанағаттандыратын барлық мәндерінде теңсіздігі орындалса, онда f функциясы х0 нүктесінде үзіліссіз деп атлады.....
Рефераттар
Толық