Шеңбердің теңдеуі 3-сабақ (Геометрия, 8 сынып, IV тоқсан)

Пән: Геометрия
Ұзақ мерзімді жоспар бөлімі: Жазықтықтағы тікбұрышты координаталар жүйесі
Сабақ тақырыбы: Шеңбердің теңдеуі 3-сабақ
Осы сабақта қол жеткізілетін оқу мақсаттары (оқу бағдарламасына сілтеме): 8.1.3.17 центрі (a, b), радиусы r болатын шеңбердің теңдеуін
〖(x-a)〗^2+〖(y-b)〗^2=r^2 білу;
8.1.3.18 берілген теңдеуі бойынша шеңбер салу
Сабақ мақсаттары: Оқушылар:
центрі (a,b) нүктесі және радиусы r болатын шеңбердің теңдеуі 〖(x-a)〗^2+〖(y-b)〗^2=r^2 түрінде болатынын түсінеді;
берілген теңдеуі бойынша шеңберді салуды және шеңбердің центрі мен радиусын анықтауды үйренеді.......
ҰМЖ, ОМЖ, ҚМЖ - Ұзақ, орта, қысқа мерзімді жоспар
Толық

Шеңбердің теңдеуі 2-сабақ (Геометрия, 8 сынып, IV тоқсан)

Пән: Геометрия
Ұзақ мерзімді жоспар бөлімі: Жазықтықтағы тікбұрышты координаталар жүйесі
Сабақ тақырыбы: Шеңбердің теңдеуі 2-сабақ
Осы сабақта қол жеткізілетін оқу мақсаттары (оқу бағдарламасына сілтеме): 8.1.3.17 центрі (a, b), радиусы r болатын шеңбердің теңдеуін
〖(x-a)〗^2+〖(y-b)〗^2=r^2 білу;
8.1.3.18 берілген теңдеуі бойынша шеңбер салу
Сабақ мақсаттары: Оқушылар:
центрі (a,b) нүктесі және радиусы r болатын шеңбердің теңдеуі 〖(x-a)〗^2+〖(y-b)〗^2=r^2 түрінде болатынын түсінеді;
берілген теңдеуі бойынша шеңберді салуды және шеңбердің центрі мен радиусын анықтауды үйренеді.......
ҰМЖ, ОМЖ, ҚМЖ - Ұзақ, орта, қысқа мерзімді жоспар
Толық

Шеңбердің теңдеуі 1-сабақ (Геометрия, 8 сынып, IV тоқсан)

Пән: Геометрия
Ұзақ мерзімді жоспар бөлімі: Жазықтықтағы тікбұрышты координаталар жүйесі
Сабақ тақырыбы: Шеңбердің теңдеуі 1-сабақ
Осы сабақта қол жеткізілетін оқу мақсаттары (оқу бағдарламасына сілтеме): түзудің жалпы теңдеуін және берілген екі нүкте арқылы өтетін түзудің теңдеуін жазу: ax+by+c=0, (х-х_1)/(х_2-х_1 )=(у-у_1)/(у_2-у_1 );
Сабақ мақсаттары: Оқушылар: түзудің жалпы теңдеуі және берілген екі нүкте арқылы өтетін түзудің теңдеуін білу және оны есептер шығаруда қолдана алу.......
ҰМЖ, ОМЖ, ҚМЖ - Ұзақ, орта, қысқа мерзімді жоспар
Толық

Математика, Бастауыш | Белгісіз қосылғышты табуға берілген есептер (2 сынып)

Тақырыбы: Белгісіз қосылғышты табуға берілген есептер
Мекен жайы: Павлодар облысы, Екібастұз қаласы,
Мектеп аты: №26 мектеп - гимназиясы
Бастауыш сынып мұғалімі: Бейсембаева Бақтыгүл Қабдығалымқызы


Күні:
Сабақтың тақырыбы: Үшінші белгісіз қосылғышты табуға берілген есептер
Сабақтың мақсаты:
1. Үшінші белгісіз қосылғышты табуға берілген есептерді шығара алуға, периметрі белгілі үшбұрыштың белгісіз қабырғасының ұзындығын таба алуға дағдыландыру.
2. Екі таңбалы санға бір таңбалы санды қосып, азайтуды басшылыққа ала отырып, логикалық ойлау қабілеттерін дамыту, ой-өрістерін арттыру;
3. Есте сақтау қабілеттерін арттыра отырып, шапшаңдыққа, сауатты жазуға, өзара көмекке , қамқорлыққа тәрбиелеу;
Ашық сабақтар
Толық

Теңдеулер теңдеулер жүйесі

Құрамында әріппен берілген белгісізі ( айнымалысы )бар теңдік теңдеу деп аталады .Мысалы , 5х+8=18; 6х+7=-5; 3(х+7)=15 -теңдеулер .х-белгісіз (айнымалы). Мұндай теңдеулер ді бір белгісізі бар немесе бір айнымалысы бар теңдеулер деп атайды .
Теңднудің оң жағы және сол жағы болады .Мысалы,4х+7=19 теңдеуіндегі 4х+7 - теңдеудің сол жағы,ал 19 - теңдеудің оң жағы. мүшелері деп аталады . 4х; 7;19 - мүшелер.Мұндағы 4х - белгісізі бар мүше, 7 19 - бос мүшелер.
Теңдеумен берілген мысалдар мен есептерді шығрғанда,ондағы әріппен берілген белгісіздің немесе айнымалының сан мәнін табамыз .
Белгісіз санның немесе айнымалының теңдеуді тура санды таңдікке айналдыратын мәні теңдеудің түбірі деп аталады.
Теңдеуді шешу дегеніміз оның түбірлерін табу немесе түбірлерінің жоқ екенін дәлелдеу . Теңдеулерді шешкенде, кейде бірдей болатын теңдаулер де кездеседі. Түбірлері бірдей болатын теңдеулерді мәндес теңдеулер деп атайды. Мысалы,2х=10 теңдеуі мен 3х =15 және 3х - х=2,5 4 теңдеулері мәндес тңдеулер. Түбірлері бірдей: х . Ескеретін жағдай, кейде теңдеудің түбірі болмайды. Түбірлері болмайтын теңдеулер де мәндес теңдеулер болып саналады .
Теңдеу әріпі бар теңдік болғандықтан , теңдеудің қасиеттерін теңдіктің қасиеттеріне сүйеніп дәлелдейміз.
Теңдеудің екі жағына да бірдей санды немесе әріпті өрнекті қосқанда (азайтқанда) теңдеу мәндес теңдеуге түрленеді.
Мысал. х+23=40,
х+23-23=40-23,
х=40-23,
х=17 – теңдеудің түбірі.
Теңдеудегі қосылғыштың таңбасын қарама қарсыға өзгертіп , оны теңдеудің бір жағынан екінші жағыцна көшіргенде теңдеу мәндес теңдеуге түрленеді.

Теңдеу екі жағын да нөлден өзге бірдей санға көбейткенде немесе бөлгенде теңдеу мәндес теңдеуге түрленеді....
Рефераттар
Толық

Математика | Көрсеткіштік теңдеу және оның қолданылуы

Көрсеткіштік теңдеу және оның қолданылуы
Мақсаты: Көрсеткіштік теңдеулерді шешуді тиімді жолдарын қарастыру және ғылымның басқа салаларында қолданылуын зерттеу.
Өзектілігі: Көрсеткіштік теңдеулерді шешу әдістерін басқа пән есептерінде қолданылуын және өмірде кездесетін құбылыстармен байланыстыру.
Есептеу тәсілдерін жетілдіру XVII ғасырдың өзекті мәселелерінің бірі болып табылды. Сол кездердегі сауда жасау географиясын одан әрі кеңейту үшін Англия, Франция, Голландия сияқты мемлекеттерге қарапайым есептеулер жүргізетін инженерлер мен «арифметиктерге» деген үлкен сұраныс болды. Көрсеткіштік функция мен логарифмді ойлап табу – есептеу техникасының үлкен жетістігі болып саналды.
Көрсеткіштік функция ұғымы XVII ғасырдың соңында пайда болды. Осы көрсеткіштік функция бағытында үлкен жетістіктерге қол жеткізген және осы ұғымды алғаш енгізген шотландық ғалым Джон Непер......
Ғылыми жобалар
Толық

Математика | Көрсеткіштік теңдеу және оның қолданылуы

Көрсеткіштік теңдеу және оның қолданылуы
Мақсаты: Көрсеткіштік теңдеулерді шешуді тиімді жолдарын қарастыру және ғылымның басқа салаларында қолданылуын зерттеу.
Өзектілігі: Көрсеткіштік теңдеулерді шешу әдістерін басқа пән есептерінде қолданылуын және өмірде кездесетін құбылыстармен байланыстыру.
Есептеу тәсілдерін жетілдіру XVII ғасырдың өзекті мәселелерінің бірі болып табылды. Сол кездердегі сауда жасау географиясын одан әрі кеңейту үшін Англия, Франция, Голландия сияқты мемлекеттерге қарапайым есептеулер жүргізетін инженерлер мен «арифметиктерге» деген үлкен сұраныс болды. Көрсеткіштік функция мен логарифмді ойлап табу – есептеу техникасының үлкен жетістігі болып саналды.
Көрсеткіштік функция ұғымы XVII ғасырдың соңында пайда болды. Осы көрсеткіштік функция бағытында үлкен жетістіктерге қол жеткізген және осы ұғымды алғаш енгізген шотландық ғалым Джон Непер......
Ғылыми жобалар
Толық

Технология | ЖҮКТЕЛГЕН ПАРАБОЛАЛЫҚ ТЕҢДЕУДІ КОЭФФИЦИЕНТ АРҚЫЛЫ БАСҚАРУ

Кіріспе
Қазіргі кезде тиімді басқару теориясында дербес туындылы теңдеулерімен сипатталатын есептер ерекше орын алады. Көптеген әдебиеттерде жүйелердің шешімділігі, жеткілікті шарты көрсетілген және шешу алгоритмі құрастырылған. Тиімді басқару теориясына бағытталған ғылыми жұмыстардың арасында келесі А.Г Буковскийдің /1/ Ж.Л.Лионстың /2/ еңбектерін айтуға болады дербес туынды теңдеулермен сипатталатын тиімді басқару есептерінде басқару көп жағдайларда оң жағынан немесе шекаралық және бастапқы шарттарына кіреді. Коэффицент арқылы басқару жүйелері сызықты емес және жеке зерттеуді қажет етеді. Коэффицент арқылы басқару системасы С.Я.Серовайскийдің /3/, Ж.Л. Лионстың /2/ еңбектерінен қарастырылған. Тиімді басқару теориясын оқи отырып көптеген проблемалдардың ішіндегі дербес туындылы есеп үшін шектік есебіне қатысты жүктелген теңдеулер ерекше орын алады. Жүктелген теңдеуі мынандай ....
Курстық жұмыстар
Толық

Алгебра | Дифференциялдық теңдеу сызықты теңдеу

Дифференциялдық теңдеу шешімінің сипатын анықтау үшін өзінің бірінші әдісіне Ляпунов шешемді бірсарынды (монотонды) функциясымен салыстырады, мұндағы - нақты сан. Мұндай салыстыру нәтижесінде әрбәр шешімге белгілі бір саны сәйкес қойылады.Егер Функциялар жиынтығын өсу немесе кему кестесі ретінде алатын болса, онда осы кесте бойынша дифференциялдық теңдеулердің шешімдер жиынтығы реттелген болып шығады. Осылайша салыстыру негізінде Ляпунов сипаттаушы көрсеткіштер (сандар) теориясын жасаған. Ляпуновтың бірінші әдісі осы теорияға негізделген.
Жұмыста біртекті сызықты дифференциялдық теңдеулер жүйесінің негізгі кластарының біреуін құрайтын, дұрыс жүйелер қарастырылған.
Мұнда үшбұрышты жүйелер үшін негізгі теоремалардың бірі Ляпунов теоремасы және мысалдар келтірілген. ....
Курстық жұмыстар
Толық

Алгебра | Дифференциалдық теңдеулер

Ғылыми-техникалық прогресс пен өндірістік технологияның дамуы, экономиканың өркендеу дәуірінде қоғамға жан-жақты дамыған, белсенді өз бетінше жасампаздықпен ойлай білетін жастардың тұрақты легінің келіп отыруын талап етеді. Сондықтан оқыту процессі деңгейін арттыру арқылы, ақыл-ойы жетілген, жан-жақты дамыған, жасампаздықпен еңбек етуге қабілетті, өз тағдырларын өздері шеше алатын, өз бетінше білімін толықтыру және өздігінен кәсіби шеберлігін арттыру мүмкіндігі бар азаматтар даярлап білім саласындағы басты мақсат болып табылады.
Ғылыми ақпараттар ағынының жедел қарқынмен өсуі, жалпы білім беретін студенттерді өз бетінше жаңа білімдер игеруге қабілетті етіп тәрбиелеу мен оқытуды талап етеді.
Өз бетінше білім алу үшін студент өз танымдық қызметі нысанның мәнін ұғынып, оның іс әрекет жолдарын игеруге тура келеді. Сол себепті студенттерді жаңа білімдерді алу “технологиясын” дифференциалдық теңдеулер курсында тірек конспектілерін қолдану жолдарын мақсатты түрде оқыту қажеттігі туындайды.
Бұл дипломдық жұмысымда дифференциалдық теңдеулер курсында тірек конспектілерін қолдану, және де дифференциалдық теңдеулерді шешу жолдарын қарастырамын. Дипломдық жұмыс II тараудан тұрады.
§ 1.1. Дифференциялдық теңдеулер. Негізгі ұғымдар .
§ 1.2. Айнымалылары ажыратылатын теңдеулердің шешімі көрсетіледі.
§ 1.3. Біртекті және оларға келтірілетін теңдеулер,f(x,y) функциясы өзінің аргументтеріне қарай нолінші дәрежелі функция болса, онда мұндай теңдеуді біртекті деп атайды, және теңдеулердің шешімдерінің айқын формулалары алынады.
II тарауда §2.1. Сызықты теңдеулер, теңдеулердің анықтамасы, теңдеудің жалпы шешімінің формуласын көрсетеміз.
§ 2.2. Бернулли теңдеуінің шешімін, қайсыбір жағдайларда Бернулли теңдеуін y-u(x)•v(x) алмастыруын қолданып шешкен ыңғайлы екендігі көрсетіледі.
§ 2.3. Толық дифференциалдық теңдеулер оны жалпы шешімін табу қарастырылады.
§ 2.4. Интегралдық көбейткіш, кез келген теңдеу толық дифференциалды болмайды. Демек, шарт әр уақытта орындалмайды екен. Осыған байланысты берілген теңдеуді қайсыбір
функциясына көбейтіп толық дифференциалды теңдеу алуға болатындығы қарстырылады.
§ 2.5-те Жоғарғы ретті дифференциалдық теңдеулер. Ретін төмендету әдісі көрсетіледі.
§ 2.6-да n-ретті сызықтық дифференциалдық теңдеулер қарастырылып, жалпы шешім табу қарастырылады.Диплом жұмысының артында қорытынды, әдебиеттер тізімі көрсетілед ....
Курстық жұмыстар
Толық