Сандық қатарлар
Берілген ақырсыз u1, u2, u3,..... un,... сандық тізбектің мүшелерін плюс таңбасымен біріктіргенде шығатын символ
u1 + u2 + u3+...+ un+...= (I)
сандық қатар, ал u1, u2, u3,..... un,... сандары қатардың мүшелері, мәселен, u1-бірінші мүшесі, u2 - екінші мүшесі,..., un – п -ші, немесе жалпы мүшесі деп аталады.
Анықтама. (1) қатардың алдыңғы и мүшелерінің қосындысы
Sn = u1 + u2 + u3+...+ un = (n=1,2, 3,….), (2)
сол қатардың n- ші дербес қосындысы деп аталады.
Дербес қосындылар тізбегі S1, S2, S3,..., Sn,... үшін мына үш жағдайдың бірі ғана орындалуы мүмкін:
1) п -да дербес қосынды Sn-нің шектеулі шегі S бap;
2) п -да дербес қосынды Sn айқын таңбалы ақырсыз шек + , не - ке ұмтылады;
3) п -да дербес қосынды Sn ешқандай шекке ұмтылмайды (шегі жоқ).
Анықтама. Егер сандық қатар (1)-дің дербес қосындысы Sn -нің п -да шектеулі шегі Sn = S бар болса, ол жинақты қатар, ал S саны сол қатардың қосындысы деп аталады.
Егер п -да, Sn-нің шегі ақырсыздыққа ұмтылса немесе шегі мүлдем жоқ болса, (1)-ді жинақсыз қатар деп атаймыз.
Мысал ретінде геометриялық прогрессия мүшелерінен құралған, еселілігі q -ға тең a+q+aq2+...+aq"+...= aqk (3) қатарын қарастыралық.
Әуелі q 1 болатын жағдайдағы дербес қосындыны құралық:
1) Егер < 1 болса, онда яғни (3) қатар жинақты, оның қосындысы болады.
2) Erep > 1 болса, онда яғни (3) қатар жинақсыз.
3) Erep q = 1 болса, онда (3) қатар мынадай түрде жазылады: а+а+а+...-а+... , онда яғни (3) қатар жинақсыз.
4) Erep q = -1 болса, онда....
u1 + u2 + u3+...+ un+...= (I)
сандық қатар, ал u1, u2, u3,..... un,... сандары қатардың мүшелері, мәселен, u1-бірінші мүшесі, u2 - екінші мүшесі,..., un – п -ші, немесе жалпы мүшесі деп аталады.
Анықтама. (1) қатардың алдыңғы и мүшелерінің қосындысы
Sn = u1 + u2 + u3+...+ un = (n=1,2, 3,….), (2)
сол қатардың n- ші дербес қосындысы деп аталады.
Дербес қосындылар тізбегі S1, S2, S3,..., Sn,... үшін мына үш жағдайдың бірі ғана орындалуы мүмкін:
1) п -да дербес қосынды Sn-нің шектеулі шегі S бap;
2) п -да дербес қосынды Sn айқын таңбалы ақырсыз шек + , не - ке ұмтылады;
3) п -да дербес қосынды Sn ешқандай шекке ұмтылмайды (шегі жоқ).
Анықтама. Егер сандық қатар (1)-дің дербес қосындысы Sn -нің п -да шектеулі шегі Sn = S бар болса, ол жинақты қатар, ал S саны сол қатардың қосындысы деп аталады.
Егер п -да, Sn-нің шегі ақырсыздыққа ұмтылса немесе шегі мүлдем жоқ болса, (1)-ді жинақсыз қатар деп атаймыз.
Мысал ретінде геометриялық прогрессия мүшелерінен құралған, еселілігі q -ға тең a+q+aq2+...+aq"+...= aqk (3) қатарын қарастыралық.
Әуелі q 1 болатын жағдайдағы дербес қосындыны құралық:
1) Егер < 1 болса, онда яғни (3) қатар жинақты, оның қосындысы болады.
2) Erep > 1 болса, онда яғни (3) қатар жинақсыз.
3) Erep q = 1 болса, онда (3) қатар мынадай түрде жазылады: а+а+а+...-а+... , онда яғни (3) қатар жинақсыз.
4) Erep q = -1 болса, онда....
Рефераттар