Сутектік байланыс. Жай және күрделі заттардың қасиеттерінің химиялық байланыс және кристалдық тор типіне тәуелділігі. Химия, 10 сынып, дидактикалық материал, 6 сабақ.
Дидактикалық материалдар
Сутектік байланыс
Сутектік байланыс оң зарядты полюстікке ие болған сутек атомы мен теріс полюсті, электртерістігі күшті, бөлінбеген электрон жұбы бар (көбіне F, О, N, кейде CI, S) атомдар арасында түзіледі. Сондықтан сутектік байланыстың механизмін жартылай электростатикалық, жартылай донорлы-акцепторлы деп қарастыруға болады.
Сутектік байланысқа белоктардағы карбонил тобы мен амин тобындағы сутектің арасында түзілген байланыс мысал бола алады.
Бұл полинуклеотидтер молекуласында іске асатын молекула ішіндік сутектік байланысқа жатады. Ал химияда көбіне молекула- аралық сутектік байланыстар кездеседі. Оны этил спиртінің өзінен немесе оны суға араластырғанда жылу бөле жүретін процестен байқауға болады.
Кіші молекулалы су, спирт, альдегид тәрізді заттардың қалыпты жағдайда сұйық күйде болуы сутектік байланыстың әсерінен. Сонымен қатар аммиак, фторсутек сияқты газ күйіндегі заттардың оңай сұйылуы олардың молекуласының арасында түзілетін сутектік байланыстар арқылы іске асырылады.
Сутектік байланыспен байланысқан заттар молекулалық кристалдық торға ие болады.
ВОДОРОДНАЯ СВЯЗЬ (Н-связь) – особый тип взаимодействия между реакционно-способными группами, при этом одна из групп содержит атом водорода, склонный к такому взаимодействию. Водородная связь – глобальное явление, охватывающее всю химию. В отличие от обычных химических связей, Н-связь появляется не в результате целенаправленного синтеза, а возникает в подходящих условиях сама и проявляется в виде межмолекулярных или внутримолекулярных взаимодействий.
ОСОБЕННОСТИ ВОДОРОДНОЙ СВЯЗИ.
Отличительная черта водородной связи – сравнительно низкая прочность, ее энергия в 5–10 раз ниже, чем энергия химической связи. По энергии она занимает промежуточное положение между химическими связями и Ван-дер-ваальсовыми взаимодействиями, теми, что удерживают молекулы в твердой или жидкой фазе.
В образовании Н-связи определяющую роль играет электроотрицательность участвующих в связи атомов – способность оттягивать на себя электроны химической связи от атома – партнера, участвующего в этой связи. В результате на атоме А с повышенной электроотрицательностью возникает частичный отрицательный заряд d- , а на атоме-партнере – положительный d+, химическая связь при этом поляризуется: Аd-–Нd+.
ВОДОРОД
Возникший частичный положительный заряд на атоме водорода позволяет ему притягивать другую молекулу, также содержащую электроотрицательный элемент, таким образом, основную долю в образование Н-связи вносят электростатические взаимодействия.
В формировании Н-связи участвуют три атома, два электроотрицательных (А и Б) и находящийся между ними атом водорода Н, структура такой связи может быть представлена следующим образом: Б···Нd+–Аd- (водородную связь обычно обозначают точечной линией). Атом А, химически связанный с Н, называют донором протона (лат. donare – дарить, жертвовать), а Б – его акцептором (лат. acceptor – приемщик). Чаще всего истинного «донорства» нет, и Н остается химически связанным с А.
ВАН-ДЕР-ВААЛЬСА УРАВНЕНИЕ
Атомов – доноров А, поставляющих Н для образования Н-связей, не много, практически всего три: N, O и F, в то же время набор атомов-акцепторов Б весьма широк.
Само понятие и термин «водородная связь» ввели В.Латимер и Р.Родебуш в 1920, для того, чтобы объяснить высокие температуры кипения воды, спиртов, жидкого HF и некоторых других соединений. Сопоставляя температуры кипения родственных соединений Н2O, Н2S, Н2Se, и Н2Te, они обратили внимание на то, что первый член этого ряда – вода – кипит намного выше, чем это следовало из той закономерности, которую образовали остальные члены ряда. Из этой закономерности следовало, что вода должна кипеть на 200°С ниже, чем наблюдаемое истинное значение.
Точно такое же отклонение наблюдается для аммиака в ряду родственных соединений: NН3, Н3P, Н3As, Н3Sb. Его истинная температура кипения (–33° С) на 80° С выше ожидаемого значения.
При кипении жидкости разрушаются только Ван-дер-Ваальсовы взаимодействия, те, что удерживают молекулы в жидкой фазе. Если температуры кипения неожиданно высокие, то, следовательно, молекулы связаны дополнительно еще какими-то силами. В данном случае это и есть водородные связи.
Точно также повышенная температура кипения спиртов (в сравнении с соединениями, не содержащими группу -ОН) – результат образования водородных связей.
В настоящее время надежный способ обнаружить Н-связи дают спектральные методы (чаще всего инфракрасная спектроскопия). Спектральные характеристики групп АН, связанных водородными связями, заметно отличаются от тех случаев, когда такая связь отсутствует. Кроме того, если структурные исследования показывают, что расстояние между атомами Б – Н меньше суммы Ван-дер-Ваальсовых радиусов, то считают, что присутствие Н-связи установлено.
Помимо повышенной температуры кипения водородные связи проявляются себя также при формировании кристаллической структуры вещества, повышая его температуру плавления. В кристаллической структуре льда Н-связи образуют объемную сетку, при этом молекулы воды располагаются таким образом, чтобы атомы водорода одной молекулы были направлены к атомам кислорода соседних молекул:
Борная кислота В(ОН)3 имеет слоистую кристаллическую структуру, каждая молекула связана водородными связями с тремя другими молекулами. Упаковка молекул в слое образует паркетный узор, собранный из шестиугольников:
Большинство органических веществ не растворимо в воде, когда такое правило нарушается, то, чаще всего, это результат вмешательства водородных связей.
Кислород и азот – основные доноры протонов, они берут на себя функцию атома А в рассмотренной ранее триаде Б···Нd+–Аd-. Они же, чаще всего, выступают в роли акцепторов (атом Б). Благодаря этому некоторые органические вещества, содержащие O и N в роли атома Б, могут растворяться в воде (роль атома А исполняет кислород воды). Водородные связи между органическим веществом и водой помогают «растащить» молекулы органического вещества, переводя его в водный раствор.
Существует эмпирическое правило: если органическое вещество содержит не более трех атомов углерода на один атом кислорода, то оно легко растворяется в воде:
Бензол весьма незначительно растворим в воде, но если заменить одну группу СН на N, то получим пиридин С5Н5N, который смешивается с водой в любых соотношениях.
Водородные связи могут проявить себя и в неводных растворах, когда на водороде возникает частичный положительный заряд, а рядом находится молекула, содержащая «хороший» акцептор, как правило кислород. Например, хлороформ HCCl3 растворяет жирные кислоты, а ацетилен HCєCH растворим в ацетоне:
Этот факт нашел важное техническое применение, ацетилен, находящийся под давлением, очень чувствителен к легким сотрясениям и легко взрывается, а его раствор в ацетоне под давлением безопасен в обращении.
Важную роль играют водородные связи в полимерах и биополимерах. В целлюлозе – основном компоненте древесины – гидроксильные группы, расположены в виде боковых групп полимерной цепи, собранной из циклических фрагментов. Несмотря на сравнительно слабую энергию каждой отдельной Н-связи, их взаимодействие на всем протяжении полимерной молекулы приводит к столь мощному межмолекулярному взаимодействию, что растворение целлюлозы становится возможным лишь при использовании экзотического высокополярного растворителя – реактива Швейцера (аммиачный комплекс гидроксида меди).
В полиамидах (капрон, нейлон) Н-связи возникают между карбонильными и аминогруппами >С=О···Н–N<, расположенными в соседних полимерных цепях:
Это приводит к образованию кристаллических областей в структуре полимера и увеличению его механической прочности.
То же самое происходит в полиуретанах, имеющих строение, близкое к полиамидам:
-NH-C(O)O-(CH2)4-OC(O)-NH-(CH2)n-NH-C(O)O-
Образование кристаллических областей и последующее упрочнение полимера происходит благодаря образованию Н-связей между карбонильными и аминогруппами >С=О···Н–N<.
Аналогичным образом происходит объединение параллельно уложенных полимерных цепочек в белках, однако Н-связи предоставляют белковым молекулам также иной способ упаковки – в виде спирали, при этом витки спирали закреплены все теми же водородными связями, возникающими между карбонильной и аминогруппой:
В молекуле ДНК записана вся информация о конкретном живом организме в виде чередующихся циклических фрагментов, содержащих карбонильные и аминогруппы. Таких фрагментов четыре типа: аденин, тимин, цитозин и гуанин. Они расположены в виде боковых подвесков вдоль всей полимерной молекулы ДНК. Порядок чередования этих фрагментов определяет индивидуальность каждого живого существа., При парном взаимодействие карбонильных С=О и аминогрупп NH, а также аминогрупп NH и атомов азота, не содержащих водород, возникают Н-связи, именно они удерживает две молекулы ДНК в форме широко известной двойной спирали:
К образованию Н-связи (в роли акцепторов протонов) склонны комплексы некоторых переходных металлов; наиболее расположены к участию в Н-связи комплексы металлов VI–VIII групп. Для того, чтобы такая связь возникла в ряде случае необходимо участие мощного донора протона, например, трифторуксусной кислоты. На первой стадии (см. рисунок ниже) возникает Н-связь с участием атома металла иридия (комплекс I), играющего роль акцептора Б.
Далее при понижении температуры (от комнатной до –50° С) протон переходит к металлу и появляется обычная связь М–Н. Все превращения обратимы, в зависимости от температуры протон может передвигаться либо к металлу, либо к своему донору – аниону кислоты.
На второй стадии металл (комплекс II) принимает протон, а вместе с ним положительный заряд и становится катионом. Образуется обычное ионное соединение (как NaCl). Однако, перейдя к металлу, протон сохраняет свою постоянную тягу к различным акцепторам, в данном случае к аниону кислоты. В результате появляется Н-связь (отмечена звездочками), дополнительно стягивающая ионную пару:
Атом водорода может участвовать в роли атома Б, то есть, акцептора протона в том случае, когда на нем сосредоточен отрицательный заряд, это реализуется в гидридах металлов: Мd+–Нd-, соединениях, содержащих связь металл – водород. Если гидрид металла взаимодействует с донором протона средней силы (например, фторированным трет-бутанолом), то возникает необычный диводородный мостик, где водород сам с собой организует Н-связь: Мd+–Нd-···Нd+–Аd-:
В показанном комплексе клиновидными линиями со сплошной заливкой или поперечной штриховкой обозначены химические связи, направленные к вершинам октаэдра.
Вещества молекулярного и немолекулярного строения. Зависимость свойств веществ от особенностей их кристаллической решетки
Все вещества могут быть разделены на вещества молекулярного и немолекулярного строения. Если большинство органических веществ имеют молекулярное строение, то неорганические вещества имеют преимущественно немолекулярное (ионное или атомное) строение.
Вещества молекулярного строения (рис. 3) состоят из отдельных молекул. Так, молекулярную природу имеют углеводороды, спирты, карбоновые кислоты, углеводы, многие простые вещества (водород Н2, кислород O2, хлор Сl2, сера S8, белый фосфор Р4), оксиды (СO2, SO2, Н2O), водородные соединения (НСl, HF, NH3), некоторые галогениды (РСl3, TiCl4) и т. д.
Атомы в молекуле связаны между собой прочными ковалентными связями, в то время как между отдельными молекулами действуют слабые межмолекулярные силы. В результате молекулярные кристаллические решетки обладают малой прочностью, а вещества с такими решетками имеют низкие температуры плавления и кипения, не проводят электрический ток.
Рис. 3. Молекулярная решетка иода I2
Вещества немолекулярного строения состоят из атомов или ионов и при обычных условиях бывают всегда твердыми. Твердые вещества, как правило, имеют кристаллическое строение. Оно характеризуется правильным расположением частиц в строго определенных точках пространства. Точки, в которых размещены частицы, называются узлами кристаллической решетки. В узлах воображаемой решетки могут находиться ионы, атомы или молекулы. В зависимости от вида частиц и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.
Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз — одна из аллотропных модификаций углерода. Кристалл алмаза состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами (рис. 4).
Рис. 4. Кристаллическая решетка алмаза
Отдельных молекул в решетке алмаза нет, весь кристалл представляет собой одну гигантскую молекулу. Атомная кристаллическая решетка характерна для бора, кремния, германия, некоторых карбидов (SiC) и оксидов (SiO2).
Рис. 5. Кристаллическая решетка хлорида натрия (а) и ее схематическое изображение (б)
Вещества с атомной кристаллической решеткой имеют достаточно высокие температуры плавления, обладают высокой твердостью (кроме графита), нерастворимы в воде или других растворителях, химически мало активны.
Кристаллические решетки, состоящие из ионов, называются ионными. Их образуют вещества с ионной связью. Примером может служить кристалл хлорида натрия, в котором каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион — шестью ионами натрия (рис. 5).
Очень часто при изображении кристаллических решеток указывают только взаимное расположение частиц, но не их размеры, как это показано на рисунке 56.
Так же, как и в алмазе, в кристалле хлорида натрия нельзя выделить отдельные молекулы соли. Весь кристалл следует рассматривать как одну гигантскую макромолекулу, состоящую из равного числа ионов Na+ и Сl-. Отдельные ионные молекулы NaCl могут существовать только в газовой фазе при высоких температурах.
Связи между ионами в ионном кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи. Ионные соединения, как правило, легко растворяются в полярных жидкостях (например, в воде), их расплавы и водные растворы проводят электрический ток.
Вещества с металлической связью образуют металлическую кристаллическую решетку, имеют хорошие электро- и теплопроводность, обладают характерным металлическим блеском, ковкостью.
Типы кристаллических решеток и структур веществ (Таблица)
Справочная таблица по химии содержит информацию по важнейшим типам кристаллических решеток и структур центральных атомов. Таблица предназначена для школьников, изучающих углубленный курс неорганической химии, абитуриентов, поступающих в вузы химического профиля, а также студентов.
Таблица типы кристаллических решеток
Тип решетки | Формула | Изображение |
Кубическая | a = b = c x = β = y = 90° | |
Тетрагональная | a = b ≠ c x = β = y = 90° | |
Ромбическая | a ≠ b ≠ c x = β = y = 90° | |
Моноклинная | a ≠ b ≠ c x = β = 90° y ≠ 90° | |
Триклинная | a ≠ b ≠ c x ≠ β ≠ y ≠ 90° | |
Гексагональная | a = b ≠ c |
Примеры кристаллических решеток
Проверочная работа по теме «Кристаллические решетки».
Вариант 1.
- Что называют кристаллической решеткой вещества? Какие кристаллические решетки имеют: графит, поваренная соль, медь? Какие частицы находятся в узлах каждой кристаллической решетки? Как это отражается на свойствах названных веществ?
- Какие свойства проявляют вещества с ионной кристаллической решеткой? Поясните примером.
- Какую кристаллическую решетку должен иметь карбид кремния, из которого делают абразивные материалы.
Вариант 2.
- Приведите примеры аморфных и кристаллических веществ. В чем их отличие?
- По каким свойствам иода и нафталина можно определить, что они имеют молекулярную кристаллическую решетку?
- Некое вещество имеет атомную кристаллическую решетку. Охарактеризуйте предположительно его свойства по плану: а) твердость; б) электропроводимость; в) пластичность или хрупкость; г) металлический блеск; д) температура плавления.
Вариант 3.
- Какой тип кристаллической решетки в следующих веществах: хлорид натрия, хлороводород, хлор? Как будут изменяться температуры плавления этих веществ в зависимости от типа их кристаллической решетки?
- Объясните различие свойств алмаза и графита неодинаковым строением этих веществ. Назовите типы кристаллических решеток у алмаза и графита.
- Какие свойства проявляют вещества с металлической кристаллической решеткой? Поясните примерами.
Вариант 4.
- Какой тип кристаллической решетки в следующих веществах: фтор, фтороводород, фторид натрия? Какие будут различия в физических свойствах этих веществ?
- Какой тип кристаллической решетки будет характерен для следующих веществ в твердом состоянии: а) КВr; б) НВr; в) Вr2; г) С (графит)?
- На конкретных примерах покажите, как проявляется зависимость некоторых физических свойств веществ от типа их кристаллических решеток.
Әлеуметтік желілерде бөлісіңіз:
Facebook | VK | WhatsApp | Telegram | Twitter
Қарап көріңіз 👇
Пайдалы сілтемелер:
» Туған күнге 99 тілектер жинағы: өз сөзімен, қысқаша, қарапайым туған күнге тілек
» Абай Құнанбаев барлық өлеңдер жинағын жүктеу, оқу
» Дастархан батасы: дастарханға бата беру, ас қайыру
Соңғы жаңалықтар:
» 2025 жылы Ораза және Рамазан айы қай күні басталады?
» Утиль алым мөлшерлемесі өзгермейтін болды
» Жоғары оқу орындарына құжат қабылдау қашан басталады?