Туындының көмегімен функцияның графигін зерттеп салу. Алгебра, 10 сынып, қосымша материал.
Полное исследование функции и построение графика.
Стоит задача: провести полное исследование функции и построить ее график
Алгоритм исследования функции состоит из следующих шагов.
- Нахождение области определения функции.
Это очень важный шаг исследования функции, так как все дальнейшие действия будут проводиться на области определения.
В нашем примере нужно найти нули знаменателя и исключить их из области действительных чисел.
(В других примерах могут быть корни, логарифмы и т.п. Напомним, что в этих случаях область определения ищется следующим образом: для корня четной степени, например, - область определения находится из неравенства ;для логарифма - область определения находится из неравенства ).
- Исследование поведения функции на границе области определения, нахождение вертикальных асимптот.
На границах области определения функция имеет вертикальные асимптоты, если односторонние пределы функции в этих граничных точках бесконечны.
В нашем примере граничными точками области определения являются .
Исследуем поведение функции при приближении к этим точкам слева и справа, для чего найдем односторонние пределы:
Так как односторонние пределы бесконечны, то прямые являются вертикальными асимптотами графика.
- Исследование функции на четность или нечетность.
Функция является четной, если . Четность функции указывает на симметрию графика относительно оси ординат.
Функция является нечетной, если . Нечетность функции указывает на симметрию графика относительно начала координат.
Если же ни одно из равенств не выполняется, то перед нами функция общего вида.
В нашем примере выполняется равенство , следовательно, наша функция четная. Будем учитывать это при построении графика - он будет симметричен относительно оси oy.
- Нахождение промежутков возрастания и убывания функции, точек экстремума.
Промежутки возрастания и убывания являются решениями неравенств и соответственно.
Точки, в которых производная обращается в ноль, называют стационарными.
Критическими точками функции называют внутренние точки области определения, в которых производная функции равна нулю или не существует.
ЗАМЕЧАНИЕ (включать ли критические точки в промежутки возрастания и убывания).
- Некоторые авторы полагают, что промежутки возрастания и убывания являются решениями неравенств и . В этом случае критические точки не включаются в промежутки.
- Некоторые авторы полагают, что точки, в которых функция определена, а конечной производной не имеет, нужно включать в промежутки возрастания и убывания (например, функция в точке х=0определена, а производная в этой точке бесконечна , х=0 следует включить в промежуток возрастания функции).
- По нашему мнению, принципиальной важности это не имеет, хотя и может стать причиной разногласий. Чтобы избежать конфликтов, УТОЧНЯЙТЕ У СВОЕГО ПРЕПОДАВАТЕЛЯ ЕГО ОТНОШЕНИЕ К ВКЛЮЧЕНИЮ КРИТИЧЕСКИХ ТОЧЕК В ПРОМЕЖУТКИ ВОЗРАСТАНИЯ И УБЫВАНИЯ. А еще лучше, ссылайтесь на математическую литературу, рекомендованную министерством образования РФ.
Мы будем включать критические точки в промежутки возрастания и убывания, если они принадлежат области определения функции.
Таким образом, чтобы определить промежутки возрастания и убывания функции
- во-первых, находим производную;
- во-вторых, находим критические точки;
- в-третьих, разбиваем область определения критическими точками на интервалы;
- в-четвертых, определяем знак производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку возрастания, знак «минус» - промежутку убывания.
Поехали!
Находим производную на области определения (при возникновении сложностей, смотрите раздел дифференцирование функции, нахождение производной).
Находим критические точки, для этого:
- Находим стационарные точки (они же нули числителя): в нашем примере;
- Находим нули знаменателя: .
Наносим эти точки на числовую ось и определяем знак производной внутри каждого полученного промежутка. Как вариант, можно взять любую точку из промежутка и вычислить значение производной в этой точке. Если значение положительное, то ставим плюсик над этим промежутком и переходим к следующему, если отрицательное, то ставим минус и т.д. К примеру, , следовательно, над первым слева интервалом ставим плюс.
Делаем вывод:
- функция возрастает на промежутке и на промежутке ;
- функция убывает на промежутке и на промежутке .
Схематично плюсами / минусами отмечены промежутки где производная положительна / отрицательна. Возрастающие / убывающие стрелочки показывают направление возрастания / убывания.
Точками экстремума функции являются точки, в которых функция определена и проходя через которые производная меняет знак.
В нашем примере точкой экстремума является точка х=0 . Значение функции в этой точке равно . Так как производная меняет знак с плюса на минус при прохождении через точку х=0 , то (0; 0) является точкой локального максимума. (Если бы производная меняла знак с минуса на плюс, то мы имели бы точку локального минимума).
- Нахождение промежутков выпуклости и вогнутости функции и точек перегиба.
Промежутки вогнутости и выпуклости функции находятся при решениями неравенств и соответственно.
Иногда вогнутость называют выпуклостью вниз, а выпуклость – выпуклостью вверх.
Здесь также справедливы замечания, подобные замечаниям из пункта про промежутки возрастания и убывания.
Таким образом, чтобы определить промежутки вогнутости и выпуклости функции :
- во-первых, находим вторую производную;
- во-вторых, находим нули числителя и знаменателя второй производной;
- в-третьих, разбиваем область определения полученными точками на интервалы;
- в-четвертых, определяем знак второй производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку вогнутости, знак «минус» - промежутку выпуклости.
Поехали!
Находим вторую производную на области определения.
Далее ищем нули числителя и знаменателя.
В нашем примере нулей числителя нет, нули знаменателя .
Наносим эти точки на числовую ось и определяем знак второй производной внутри каждого полученного промежутка.
Делаем вывод:
- функция выпуклая на промежутке ;
- функция вогнутая на промежутке и на промежутке .
Точка называется точкой перегиба , если в данной точке существует касательная к графику функции и вторая производная функции меняет знак при прохождении через .
Другими словами, точками перегиба могут являться точки, проходя через которые вторая производная меняет знак, в самих точках либо равна нулю, либо не существует, но эти точки входят в область определения функции.
В нашем примере точек перегиба нет, так как вторая производная меняет знак проходя через точки , а они не входят в область определения функции.
- Нахождение горизонтальных и наклонных асимптот.
Горизонтальные или наклонные асимптоты следует искать лишь тогда, когда функция определена на бесконечности.
Наклонные асимптоты ищутся в виде прямых , где и .
Если k=0 и b не равно бесконечности, то наклонная асимптота станетгоризонтальной.
Кто такие вообще эти асимптоты?
Это такие линии, к которым приближается график функции на бесконечности. Таким образом, они очень помогают при построении графика функции.
Если горизонтальных или наклонных асимптот нет, но функция определена на плюс бесконечности и (или) минус бесконечности, то следует вычислить предел функции на плюс бесконечности и (или) минус бесконечности, чтобы иметь представление о поведении графика функции.
Для нашего примера - горизонтальная асимптота.
На этом с исследование функции завершается, переходим к построению графика.
- Вычисляем значения функции в промежуточных точках.
Для более точного построения графика рекомендуем найти несколько значений функции в промежуточных точках (то есть в любых точках из области определения функции).
Для нашего примера найдем значения функции в точках х=-2 , х=-1 , х=-3/4 ,х=-1/4 . В силу четности функции, эти значения будут совпадать со значениями в точках х=2 , х=1 , х=3/4 , х=1/4.
- Построение графика.
Сначала строим асимптоты, наносим точки локальных максимумов и минимумов функции, точки перегиба и промежуточные точки. Для удобства построения графика можно нанести и схематическое обозначение промежутков возрастания, убывания, выпуклости и вогнутости, не зря же мы проводили исследование функции =).
Осталось провести линии графика через отмеченные точки, приближая к асимптотам и следуя стрелочкам.
Этим шедевром изобразительного искусства задача полного исследования функции и построения графика закончена.
Графики некоторых элементарных функций можно строить с использованием геометрических преобразований графиков основных элементарных функций.
Әлеуметтік желілерде бөлісіңіз:
Facebook | VK | WhatsApp | Telegram | Twitter
Қарап көріңіз 👇
Пайдалы сілтемелер:
» Туған күнге 99 тілектер жинағы: өз сөзімен, қысқаша, қарапайым туған күнге тілек
» Абай Құнанбаев барлық өлеңдер жинағын жүктеу, оқу
» Дастархан батасы: дастарханға бата беру, ас қайыру
Соңғы жаңалықтар:
» 2025 жылы Ораза және Рамазан айы қай күні басталады?
» Утиль алым мөлшерлемесі өзгермейтін болды
» Жоғары оқу орындарына құжат қабылдау қашан басталады?